## How do you know where you're going?



If you were going somewhere, you might type the name of the place or address into the computer to get a map


You might call someone on the phone

## Then, how would you know where you were going?



What if there were no computers


What if there were no phones

## How people found their way

## How people found their way

## But wait .... Do you think

# ... markers will be exactly spread out on the trail ? 




## Probably, landmarks will be different distances apart



## Why not think of it as $1 / 2$ ?

$$
\frac{4}{8}=\frac{1}{2}
$$



## Say, you have a horse ...

To get to from where you are camped to the river takes 12 days

| 1 | $\underline{2}$ | $\underline{3}$ | $\underline{4}$ | $\underline{5}$ | $\underline{6}$ | $\underline{7}$ | $\underline{8}$ | $\underline{9}$ | $\underline{10}$ | $\underline{11}$ | $\underline{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |














By understanding fractions



## Where to go next?

If you are not sure why
$1 / 3=4 / 12$ or $10 / 12=5 / 6$,
you'll want to read the pages on equivalent fractions.

